Research Perspectives - Tools for Visualisation of Portfolios
EPSRC logo

EPSRC Database


Source RCUK EPSRC Data

EP/J016918/1 - Complex nanophotonic and plasmonic networks for ultrafast optical devices

Research Perspectives grant details from EPSRC portfolio

http://www.researchperspectives.org/gow.grants/grant_EPJ0169181.png

Dr O Muskens EP/J016918/1 - Complex nanophotonic and plasmonic networks for ultrafast optical devices

Fellow - School of Physics and Astronomy, University of Southampton

Scheme

EPSRC Fellowship

Research Areas

Optical Devices and Subsystems Optical Devices and Subsystems

Start Date

09/2012

End Date

08/2017

Value

£1,071,379

Similar Grants

Automatic generation of similar EPSRC grants

Similar Topics

Topic similar to the description of this grant

Grant Description

Summary and Description of the grant

Photonic technologies are playing an increasingly important role in our society with revolutionary applications ranging from optical data storage to broadband fibre internet. As electronics and nanophotonics are rapidly converging toward one hybrid nanotechnology, important open challenges arise related to the routing and control of light in integrated optoelectronic circuits. In this project, a conceptually new approach toward reconfigurable and switchable optical circuits will be developed. We choose the widely-used silicon-based nanophotonics platform. Our new approach will be enabled by the integration of photonic waveguides with chalcogenide phase-change materials that are used in rewritable DVDs. Reversible optical writing of patterns into the phase-change layer will achieve reconfigurable devices for routing of optical signals on a chip.

We will take the concept of phase-change technology to the next level by exploiting the technology for studying light transport in fundamentally new types of nanophotonic devices inspired by mesoscopic physics. We will design two-dimensional photonic layers in which light is controlled by the coherent mixing of a number of possible light paths. The reconfigurable phase-change layer will be used as a wavefront shaper to send light through such photonic layers etched in the waveguide. Subsequently, a pattern of ultrafast light pulses will be projected onto the waveguide to produce an ultrafast modulation of the independent light paths. This pattern will be used to achieve ultrafast switching devices through a new process of ultrafast demixing, which is fundamentally different from conventional switching devices. These processes will be facilitated by the dramatic enhancement of the Kerr optical nonlinearity by the chalcogenide cladding, by the use of nanoplasmonic actuators, and through design of advanced nanostructures, such as photonic graphene, thereby exploiting the analogies of light with solid-state quantum electronics.

Our studies include the use of plasmonic elements as nanoscale actuators to control the chalcogenide light modulator. Conversively, we will investigate how the hybrid plasmonic-chalcogenide networks can be used to achieve optical memristors, one of the building blocks of neural architectures. Such optical elements would be a first step toward routing of signals in a brain-like manner, which could lead to radically new modes of distribution and processing of information.

Structured Data / Microdata


Grant Event Details:
Name: Complex nanophotonic and plasmonic networks for ultrafast optical devices - EP/J016918/1
Start Date: 2012-09-01T00:00:00+00:00
End Date: 2017-08-31T00:00:00+00:00

Organization: University of Southampton

Description: Photonic technologies are playing an increasingly important role in our society with revolutionary applications ranging from optical data storage to broadband fibre internet. As electronics and nanophotonics are rapidly converging toward one hybrid nanotec ...