Research Perspectives - Tools for Visualisation of Portfolios
EPSRC logo

EPSRC Database


Source RCUK EPSRC Data

EP/J001937/1 - Real Fires for the Safe Design of Tall Buildings

Research Perspectives grant details from EPSRC portfolio

http://www.researchperspectives.org/gow.grants/grant_EPJ0019371.png

Professor JL Torero EP/J001937/1 - Real Fires for the Safe Design of Tall Buildings

Principal Investigator - Sch of Engineering, University of Edinburgh

Other Investigators

Dr LA Bisby, Co InvestigatorDr LA Bisby

Dr M Gillie, Co InvestigatorDr M Gillie

Dr G Rein, Co InvestigatorDr G Rein

Professor A Usmani, Co InvestigatorProfessor A Usmani

Dr S Welch, Co InvestigatorDr S Welch

Scheme

Standard Research

Research Areas

Structural Engineering Structural Engineering

Collaborators

VTT Technical Research Centre of Finland VTT Technical Research Centre of Finland

The FM Global Research The FM Global Research

Skidmore, Owings & Merrill LLP Skidmore, Owings & Merrill LLP

Scottish Building Standards Division Scottish Building Standards Division

Ove Arup & Partners Ltd Ove Arup & Partners Ltd

National Institute of Standards and Tech National Institute of Standards and Tech

Illinois Institute of Technology Illinois Institute of Technology

Buro Happold Buro Happold

Building Research Establishment Building Research Establishment

AXA UK plc AXA UK plc

Start Date

01/2012

End Date

12/2014

Value

£818,920

Similar Grants

Automatic generation of similar EPSRC grants

Similar Topics

Topic similar to the description of this grant

Grant Description

Summary and Description of the grant

A Fire Safety Strategy is an essential component of the design for a building. It ensures that in the event of a fire, building occupants can be evacuated safely. The main consideration in these strategies is time. The engineer must show that all occupants can evacuate the building without being exposed to the fire. This is particularly difficult in the case of tall buildings where occupants must travel long distances downward before they can exit the building. A rule of thumb to estimate total building evacuation time is one minute per floor. By this rule the 828m, 162 floor Burj Khalifa in Dubai would take more than 2.5 hours to fully evacuate. The 159m, 31 storey TVCC tower in Beijing was engulfed in a fire which spread up the entire height of the building within 15 minutes of ignition. Clearly, it would not have been possible to evacuate occupants in sufficient time to save them from this fire. It is therefore necessary to have a specific Fire Safety Strategy for these unique buildings.Firstly, the fire must be prevented from spreading vertically, confined to one floor for as long as possible, so occupants on floors far enough from the fire can remain safely in the building until the fire is extinguished or runs out of fuel. Secondly, the building must remain standing, again so that people still in the building and the emergency responders that enter it to fight the fire do not perish as in the World Trade Center disaster. Thirdly, the vertical escape routes must remain structurally intact and smoke free to allow safe passage of occupants from the building. If occupants cannot reach the outside of the building in a timely fashion, then the vertical escape routes must act as the outside and once reached, guarantee safety. To provide these three crucial elements and ensure the safety of occupants of tall buildings, designers must be able to approximate in a quantitative manner the fires expected to occur in these buildings. With optimal use of space being the driving force behind these designs, floors often consist of large, open plan compartments. According to the CTBUH, 82% of the tallest 100 buildings are partially or completely office use (62% completely). Fires in large open plan spaces tend not to cover the entire area of the compartment at any instant but instead propagate across it. These fires have been labelled "travelling fires" and given the statistics, it should be expected that these would be typical fires for tall buildings. Despite this, current methods of prescribing fires are based on data obtained with small homogeneously heated 4mx4m (approx) compartments. These methods, used since the beginning of the 20th Century, are still applied to all structures irrespective of their nature.Current state-of-the-art research shows that a realistic definition of the fire is essential to safely provide all three critical components of the Fire Safety Strategy but also that our current analytical and computational tools cannot provide this. This means we cannot provide an adequate quantitative assessment of the Fire Safety Strategy for tall buildings. Designers are thus not capable of assessing if safety measures introduced result in an under or over dimensioned building. Given the level of optimisation required for tall buildings, this is clearly an important weakness in the design process. As large-scale fire testing cannot be done for all possible building configurations, safe designs can only be achieved using properly validated tools. With no sufficiently detailed test data, fire models cannot be said to have been performance assessed, verified and validated for these scenarios. Real data is needed to establish modelling capabilities and identify problems, thus an integrated modelling/testing programme is essential. This project will conduct a series of tests and modelling studies to establish a methodology that generates real fire inputs for the safe definition of a Fire Safety Strategy for tall buildings.

Structured Data / Microdata


Grant Event Details:
Name: Real Fires for the Safe Design of Tall Buildings - EP/J001937/1
Start Date: 2012-01-01T00:00:00+00:00
End Date: 2014-12-31T00:00:00+00:00

Organization: University of Edinburgh

Description: A Fire Safety Strategy is an essential component of the design for a building. It ensures that in the event of a fire, building occupants can be evacuated safely. The main consideration in these strategies is time. The engineer must show that all occupants ...