Research Perspectives - Tools for Visualisation of Portfolios
EPSRC logo

EPSRC Database


Source RCUK EPSRC Data

EP/F066767/1 - Nature in Engineering for Monitoring the Oceans (NEMO)

Research Perspectives grant details from EPSRC portfolio

http://www.researchperspectives.org/gow.grants/grant_EPF0667671.png

Professor G Griffiths EP/F066767/1 - Nature in Engineering for Monitoring the Oceans (NEMO)

Principal Investigator - Faculty of Engineering & the Environment, University of Southampton

Other Investigators

Dr JIR Blake, Co InvestigatorDr JIR Blake

Dr SW Boyd, Co InvestigatorDr SW Boyd

Dr AJ Murphy, Co InvestigatorDr AJ Murphy

Scheme

Standard Research

Research Areas

Control engineering Control engineering

Robotics Robotics

Start Date

07/2009

End Date

09/2012

Value

£467,995

Similar Grants

Automatic generation of similar EPSRC grants

Similar Topics

Topic similar to the description of this grant

Grant Description

Summary and Description of the grant

There is a relentless drive from the offshore oil and gas industry to enable exploration and production from deeper parts of the world's oceans to help meet demand for energy - within a decade the need will be for wells in depths of over 3000m. Meanwhile, several countries are evaluating the potential of mineral resources on the deep sea floor as easily-mined areas on land become depleted. Economically important metals such as manganese, nickel, copper and cobalt form as nodules, widely dispersed, especially between 4000 and 6000m depth. In parallel, marine science is increasingly looking towards the research challenges of the deep oceans. The Chairman of the House of Commons Select Committee on Science and Technology summarizing statements to their 'Investigating the Oceans' inquiry stated, During this inquiry, witness after witness has told us that the deep oceans are absolutely crucial to the future of the earth and the planet (4 July 2007). For example, we have so little knowledge of the ecosystems and species diversity at great depths; our knowledge of deep ocean currents and their interaction with topography is rudimentary - and yet these deep currents are so important, for example, as the 'return' leg of the heat-carrying surface circulation in the North Atlantic; and there are processes at subduction zones and spreading ridges that we still do not understand. What all of these drivers have in common is the need to be able to explore, measure, sample, survey, and intervene in the deep oceans. Today, the technology to do so is expensive, cumbersome and of limited performance. The engineering needed to resist pressures of 6000 tonnes per square metre and more leads to heavy vehicles that travel at slow speeds and have limited agility and manoeuvrability. Contrast this with the structure, weight, speed and agility of marine animals, even those that live in the deep oceans. In this project, our aims are to find and synthesize novel design and implementation concepts for deep-diving and agile unmanned underwater vehicles (UUV) to meet offshore industry, environmental monitoring and scientific research needs based on inspiration from marine organisms to achieve increased functionality, lower weight and energy requirements and lower capital and operational costs.

Structured Data / Microdata


Grant Event Details:
Name: Nature in Engineering for Monitoring the Oceans (NEMO) - EP/F066767/1
Start Date: 2009-07-03T00:00:00+00:00
End Date: 2012-09-30T00:00:00+00:00

Organization: University of Southampton

Description: There is a relentless drive from the offshore oil and gas industry to enable exploration and production from deeper parts of the world's oceans to help meet demand for energy - within a decade the need will be for wells in depths of over 3000m. Meanwhile, ...